
Programming languages shouldn’t and needn’t be Turing
complete

GABRIEL PICKARD

Any algorithmic problem faced by application programmers in the wild1 can in principle be solved
using a Turing incomplete programming language. [Rice 1953] suggests that Turing completeness
bears a heavy price, fundamentally limiting the ability of automatic assistants to help programmers
be more productive, create less bugs and write safer software.

Nevertheless, no mainstream general purpose programming language is Turing incomplete, with
the arguable exception of SQL. We identify historical causes for this discrepancy and argue that
the current moment offers better conditions for introducing Turing incompleteness.

We present an approach to eliminating Turing completeness during the language design process,
with several examples suitable languages targeting application development.

Designers of modern practical programming languages should strongly consider evading Turing
completeness and enabling better verification, security, automated testing and distributed computing.

1 CEDING POWER TO GAIN CONTROL

1.1 Turing completeness considered harmful

The history of programming language design2 has been a history of removing powers
which were considered harmful (cf. [Dijkstra 1966]) and replacing them with tamer, more
manageable and automated constructs, including:

(1) Direct access to CPU registers and instructions → higher level compilers
(2) GOTO → structured programming
(3) Manual memory management → garbage collection (and borrow checkers)
(4) Arbitrary access → information hiding
(5) Side-effects and mutability → pure functions and persistent data structures

While not all application domains benefit from all the replacement steps above3, it appears
as if removing some expressive power can often enable a new kind of programming, even a
new kind of application altogether. Unix was possible because of the 𝐶 compiler. Photoshop
could hardly have been built on the basis of GOTO. The JavaScript ecosystem would not
have grown without garbage collection.
We shall argue that Turing incompleteness may represent a shift of at least similar

magnitude towards less bug-ridden, more manageable software, perhaps enabling new kinds
of applications. We shall furthermore argue that this gain in terms of control would come at
low-to-no cost in terms of programming language expressivity for many application domains.

1.2 The promise in circumventing Rice’s theorem

[Rice 1953] implies that any static analysis of Turing complete languages is either very
limited or fundamentally incomplete. Conversely, since Rice’s proof relies on a reduction to
the halting problem, we can hope that well-constructed Turing incomplete languages will
support much more in-depth static analysis, such as:

(1) Runtime complexity in memory or time consumption

1besides interpreting a Turing complete language and other degenerate cases
2with regards to verification and human factors
3e.g. there likely will always be demand for manual memory management in some areas

Author’s address: Gabriel Pickard, gpickard@uni-osnabrueck.de.

, Vol. 1, No. 1, Article . Publication date: November 2020.

2 Gabriel Pickard

(2) Safety conditions to rule out malware or unauthorized access to data
(3) Correctness of complex program specification beyond mere type safety
(4) Automatically generated code from such specification

These capabilities hold a promise to enable a wide variety of new and improved applications:

(1) Better collaborative sandboxing and control of plugins and app store submissions
(2) Predictable and safe ”serverless” cloud functions
(3) Safer and correct distributed computing, including verified Byzantine fault tolerance4.
(4) Safer blockchain smart contracts and static gas billing
(5) Interactive coding environments with rich inferred feedback
(6) Better monitoring and runtime analysis due to simpler trace structure

1.3 Turing complete by default

While there are notable exceptions in query languages (SQL, Datalog) and proof assistants,
Turing completeness has been the default choice for most general purpose programming
languages. It is difficult to determine whether the dominance of any technology is due to
merit or happenstance and path-dependence. We do know that Turing machines as a concept
preceded physical computers. The earlier generations of programming languages preceded
the field of strongly normalizing 𝜆 calculi and mainly had Turing machines and the closely
related von Neuman architecture to draw on as theoretical inspiration.

There are many generative (cf. [Felleisen et al. 2018]) fundamental algorithms, particularly
in numerical computing and data structure manipulation such as sorting 5 for which the most
efficient implementation6 uses unbounded loops (and in-place mutation). Unconstrained
loops, recursion and mutability imply Turing completeness (in the absence of advanced types
and proof techniques such as loop invariants), hence most early programming languages
were Turing complete.

Implementing these kinds of fundamental algorithms efficiently was an important area of
focus for the first decades of software engineering history. More recently though, higher-level
languages with features such as memory management and persistent data structures have
been gaining popularity, sacrificing efficiency for safety and usability. This shift has been
made possible by pervasive use of libraries covering numerical computing and data structure
manipulation: Individual software engineers often need not concern themselves with the
implementation details of e.g. hash maps, sorting or prime factorization.

This shift in the experience of software engineering from small, efficient and ”algorithmic”
programming to larger and conceptually simpler application development bodes well for
the project of making practical Turing incomplete languages: While we propose Turing
incomplete language in order to support automated reasoning about correctness and other
characteristics of programs, we also contend that requiring an understanding of advanced
type systems and proof procedures. As such, building up languages based on structural, as
opposed to generative loops generative (cf. [Felleisen et al. 2018]) appears promising.
In fact, we conducted a review of 10 source code repositories on GitHub, selected from

the first two pages of results for the search terms ”app” and ”webserver”, without finding a
single procedure that could not be expressed using the simple Turing incomplete constructs
we shall introduce in the following.

4[Castro et al. 1999]
5quicksort, Newton-Raphson, Euclid’s algorithm, generational garbage collection to name a few
6on a Turing or von Neuman machine

, Vol. 1, No. 1, Article . Publication date: November 2020.

Programming languages shouldn’t and needn’t be Turing complete 3

2 HOW TO STAY TOTAL

2.1 Guaranteed termination

If one forces a language to terminate for all inputs, one automatically achieves Turing
incompleteness. This is both a desirable and fairly straightforward approach, if not necessarily
easy.

There are two perspectives on ensuring termination:

(a) Take existing control structures such as arbitrary loops or recursion and constrain
them via types7, so as to only accept terminating programs.

(b) Remove and replace loops and recursion, as well as any other constructs that might
interact with the replacements in order to create accidental Turing completeness.

In the following we shall focus on the latter perspective, since we are seeking to make
terminating languages accessible beyond academia. Currently available type systems of total
functional languages require in-depth, arcane knowledge which may not be palatable to the
mainstream. This is not to say that future formalisms won’t be more user friendly. Potential
avenues of inquiry may be:

∙ An updated variant of ACL28

∙ A meta-inference system based on integrated logic programming capabilities, perhaps
somewhat inspired by [Byrd et al. 2012]

∙ Dependently typed programming with a heavy emphasis on solid defaults, tailored
to application programming, perhaps even paired with a generative machine learning
system for constructing proof tactics.

2.2 Replacing loops

In order to replace loops and recursion it behooves us to understand the kinds of tasks that
programmers apply them to in our target field. Here is a list of common use cases:

∙ Iterating over elements in a collection, creating a new collection (perhaps filtering
elements)

∙ Iterating through the integers, accessing elements in an existing list and creating a
new data structure

∙ Recursively descending into a tree-like data structure and aggregating a result on the
way back up

∙ Performing recursive arithmetic
∙ Re-applying an optimization / search-space expansion function until some condition
holds

Of the above, all but the last can readily be replaced by a combination of reduce and
integer ranges.9 Luckily, most applications never require exploring a search space, hence
such functionality could be elided or relegated to an advanced feature, requiring additional
user-constructed proofs, in accordance with the maxim ”make easy things easy, and hard
things possible”.

Constructs that could lead to infinite loops must be removed in concert, so as avoid Turing
traps: to make sure that the presence of one set of features (e.g. higher order functions and

7or other meta-inference mechanisms
8[Kaufmann and Moore 1996]
9Some recursive arithmetic may be difficult to capture this way, though it then is likely of either academic
interest or very performance sensitive, in which case other methods apply anyway.

, Vol. 1, No. 1, Article . Publication date: November 2020.

4 Gabriel Pickard

mutable variables) does not undermine the salutary effect of replacing another (e.g. arbitrary
recursion → reduce-based collection processing).

2.2.1 Functional. A workable set of choices for a functional language include;

∙ First class functions
∙ Immutable names and variables, with acyclic data structures
∙ No recursion (arguably a variant of acyclic data structures)
∙ map,reduce and filter (with some modifications for handling tree structures)
∙ List comprehensions and ranges / lazy data structures

Alternatively, a functional programming language may lean on type checking and some
scheme of well founded recursion (e.g. [Abel and Pientka 2013]).

2.2.2 Imperative. An imperative language could be made Turing incomplete by choosing:

∙ Mutability
∙ No first class functions
∙ No unconstrained for or while loops
∙ A modified, reduce-style version of foreach with a cycle checker
∙ List comprehensions and ranges / lazy data structures

2.3 Making a pleasant reduce

”[reduce] is actually the one I’ve always hated most, because, apart from a
few examples involving + or *, almost every time I see a reduce() call with a
non-trivial function argument, I need to grab pen and paper to diagram what’s
actually being fed into that function before I understand what the reduce() is
supposed to do.” – Guido van Rossum10

We shall demonstrate the work necessary for user friendly Turing incompleteness in a
Python-style programming language. Consider the following modification of the for operator
in python, to accommodate a form of reduce:

def factorial(n):

for i in range(n) with state = 1:

state = state * i

return state

There also can be affordances for processing nested data structures:

def flatten(nested_list):

for item nested in nested_list with result = []:

result.append(item)

return result

Consider the alternative unpack keyword introduced in the following. It enables processing
nested data structures with one loop, pushing the parent collection onto the stack and
inserting the child collection into the processing flow:

10[van Rossum 2005]

, Vol. 1, No. 1, Article . Publication date: November 2020.

Programming languages shouldn’t and needn’t be Turing complete 5

def flatten(nested_list):

for item in nested_list with result = []:

if type(item) == list:

unpack;

else:

result.append(item)

return result

Finally we present syntax for recursive traversal of trees. If the tree is represented as a nested
list, one could could perform traversal in the following way, using the nested keyword:

def traverse(nested_list):

for direction of item nested in nested_list with result = "":

if type(item) == list:

if direction is descending:

result += "("

else:

result += ")"

else:

result += item

return result

Given a dedicated tree data structure, the traverse operator takes two sub-blocks: down
and up for recursive descent and ascent respectively.11 Note the additional syntax involved
in gathering up all the child states in the up phase:

def max_height(nested_dict):

traverse nested_dict with h = 0:

down k, item:

print(k, item)

h += 1

up k, item for hs:

h = max(hs.values ())

return h

These examples should cover most structural use cases. If other needs turn up, more syntax
might be added. A Turing incomplete language may also choose to offer an ”escape hatch”
to an underlying Turing complete system, particularly useful for implementing efficient data
structures.

11Integration with break and unpack keywords (not shown in examples) should be relatively self-explanatory.

, Vol. 1, No. 1, Article . Publication date: November 2020.

6 Gabriel Pickard

3 CONCLUSION

We demonstrated a path to designing terminating languages for the pragmatic programmer,
while avoiding Turing traps and maintaining usability. We argued that such avenues of inquiry
have been unduly overlooked in the history of computer science and software engineering.
Fundamental theorems indicate significant potential for more robust software built with
smarter developer tools. We predict that the necessary rigor and clarity alone will benefit
programming languages designed to terminate.

3.1 Future work

There are many details to be explored in the choice of language paradigm and design of
Turing incomplete control structures. We do not yet know which application domains might
benefit the most and how much of a lift enhanced meta-reasoning and static analysis will
provide over Turing complete systems. It may very well be that many analysis techniques
also work on subsets of existing languages, though it still seems a worthwhile endeavor to
check. As language designers we know there is a great difference between equivalence in
theory and the particulars in practice.

Existing total languages such as Agda and Coq already exploit the rich information they
have about a program at edit time in an interactive user experience. Transferring such
functionality to areas like web programming would be very worthwhile. For that purpose
it appears crucial to design a rich system of type statements or some other meta-language
palatable to mainstream engineers.
Most importantly, we want to encourage language designers to aim high in automating

and assisting the software development process.

REFERENCES

Andreas M Abel and Brigitte Pientka. 2013. Wellfounded recursion with copatterns: A unified approach to
termination and productivity. ACM SIGPLAN Notices 48, 9 (2013), 185–196.

William E Byrd, Eric Holk, and Daniel P Friedman. 2012. miniKanren, live and untagged: Quine generation
via relational interpreters (programming pearl). In Proceedings of the 2012 Annual Workshop on Scheme

and Functional Programming. 8–29.

Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance. In OSDI, Vol. 99. 173–186.
EW Dijkstra. 1966. GOTO considered harmful. Comm. of the ACM 11, 3 (1966).

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. 2018. How to design
programs: an introduction to programming and computing. MIT Press.

Matt Kaufmann and J Strother Moore. 1996. ACL2: An industrial strength version of Nqthm. In Proceedings
of 11th Annual Conference on Computer Assurance. COMPASS’96. IEEE, 23–34.

Stephan Kepser. 2002. A proof of the Turing-completeness of XSLT and XQuery. Technical Report.
Technical report SFB 441, Eberhard Karls Universitat Tubingen.

H. G. Rice. 1953. Classes of Recursively Enumerable Sets and Their Decision Problems. Trans. Amer. Math.
Soc. 74, 2 (1953), 358–366. http://www.jstor.org/stable/1990888

Guido van Rossum. 2005. The fate of reduce() in Python 3000. https://www.artima.com/weblogs/viewpost.
jsp?thread=98196. Accessed: 2020-09-18.

, Vol. 1, No. 1, Article . Publication date: November 2020.

http://www.jstor.org/stable/1990888
https://www.artima.com/weblogs/viewpost.jsp?thread=98196
https://www.artima.com/weblogs/viewpost.jsp?thread=98196

	Abstract
	1 Ceding power to gain control
	1.1 Turing completeness considered harmful
	1.2 The promise in circumventing Rice's theorem
	1.3 Turing complete by default

	2 How to stay total
	2.1 Guaranteed termination
	2.2 Replacing loops
	2.3 Making a pleasant reduce

	3 Conclusion
	3.1 Future work

	References

